Estimation of fuzzy Gaussian mixture and unsupervised statistical image segmentation
نویسندگان
چکیده
This paper addresses the estimation of fuzzy Gaussian distribution mixture with applications to unsupervised statistical fuzzy image segmentation. In a general way, the fuzzy approach enriches the current statistical models by adding a fuzzy class, which has several interpretations in signal processing. One such interpretation in image segmentation is the simultaneous appearance of several thematic classes on the same site. We introduce a new procedure for estimating of fuzzy mixtures, which is an adaptation of the iterative conditional estimation (ICE) algorithm to the fuzzy framework, We first describe the blind estimation, i.e., without taking into account any spatial information, valid in any context of independent noisy observations. Then we introduce, in a manner analogous to classical hard segmentation, the spatial information by two different approaches: contextual segmentation and adaptive blind segmentation. In the first case, the spatial information is taken into account at the segmentation step level, and in the second case it is taken into account at the parameter estimation step level. The results obtained with the iterative conditional estimation algorithm are compared to those obtained with expectation-maximization (EM) and the stochastic EM algorithms, on both parameter estimation and unsupervised segmentation levels, via simulations. The methods proposed appear as complementary to the fuzzy C-means algorithms.
منابع مشابه
IMAGE SEGMENTATION USING GAUSSIAN MIXTURE MODEL
Stochastic models such as mixture models, graphical models, Markov random fields and hidden Markov models have key role in probabilistic data analysis. In this paper, we have learned Gaussian mixture model to the pixels of an image. The parameters of the model have estimated by EM-algorithm. In addition pixel labeling corresponded to each pixel of true image is made by Bayes rule. In fact, ...
متن کاملImage Segmentation using Gaussian Mixture Model
Abstract: Stochastic models such as mixture models, graphical models, Markov random fields and hidden Markov models have key role in probabilistic data analysis. In this paper, we used Gaussian mixture model to the pixels of an image. The parameters of the model were estimated by EM-algorithm. In addition pixel labeling corresponded to each pixel of true image was made by Bayes rule. In fact,...
متن کاملUnsupervised Texture Image Segmentation Using MRFEM Framework
Texture image analysis is one of the most important working realms of image processing in medical sciences and industry. Up to present, different approaches have been proposed for segmentation of texture images. In this paper, we offered unsupervised texture image segmentation based on Markov Random Field (MRF) model. First, we used Gabor filter with different parameters’ (frequency, orientatio...
متن کاملImage segmentation based on maximum-likelihood estimation and optimum entropy-distribution (MLE-OED)
A novel method based on MLE–OED is proposed for unsupervised image segmentation of multiple objects with fuzzy edges. It adjusts the parameters of a mixture of Gaussian distributions via minimizing a new loss function. The loss function consists of two terms: a local content fitting term, which optimizes the entropy distribution, and a global statistical fitting term, which maximizes the likeli...
متن کاملUnsupervised Texture Image Segmentation Using MRFEM Framework
Texture image analysis is one of the most important working realms of image processing in medical sciences and industry. Up to present, different approaches have been proposed for segmentation of texture images. In this paper, we offered unsupervised texture image segmentation based on Markov Random Field (MRF) model. First, we used Gabor filter with different parameters’ (frequency, orientatio...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
دوره 6 3 شماره
صفحات -
تاریخ انتشار 1997